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Abstract

This paper sketches several aspects of a hypothetical cortical architecture for visual 3D object recognition,
based on a recent computational model. The scheme - which is view-centered - relies on modules for
learning from examples, such as Hyperbf-like networks, as its basic components. Such models are not
intended to be precise theories of the biological circuitry but rather to capture a class of explanations
we call Memory-Based Models (MBM) that contains sparse population coding, memory-based recognition
and codebooks of prototypes. Unlike the sigmoidal units of some artificial neural networks, the units of
MBMs are consistent with the usual description of cortical neurons as tuned to multidimensional optimal
stimuli. We will describe how an example of MBM may be realized in terms of cortical circuitry and
biophysical mechanisms, consistent with psychophysical and physiological data. A number of predictions, 0
testable with physiological techniques, are made.
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1 Introduction /footnoteWe use the term RBF here in a broad sense in-
One of the main goals of vision is object recognition. But cluding generalizations of the pure RBF scheme such as
Onere o y te mGRB and HBF (see Poggio and Girosi 1990). have been
there may be many distinct routes to this goal and the used successfully to solve isolated visual tasks, such as
goal itself may come in several forms. Anyone who has learning to detect displacements at hyperacuity resolu-
struggled to identify a particular amoeba swimming on tion (Poggio, Fable and Edelman, 1992) or learning to

a microscope slide or to distinguish between novel visual identify the gender of a face (Brunelli and Poggio, 1992).

stimuli in a psychophysics laboratory might admit that We will discuss how the units of a RBF network might

recognizing a familiar face seems an altogether different be realized as neurons and how a similar network might

and simpler task. Recent evidence from several lines of be implemented by cortical circuitry and replicated at

research strongly suggests that not all recognition tasks ma levelto perforthe multi-opnent t o
are he ame Pschopysial esuts ad cmpuatinal many levels to perform the muiti-component task of vi-

are the same. Psychophysical results and computational sual recognition. We hope to show that MBMs are not

analyses suggest that recognition strategies may depend merelyntoy We ope toms , tht viare not

on he ypeof othobjct nd isul tsk.Symmetric merely toy replicas of neural systems, but viable modelson the type of both object and visual task. Smerc that make testable biological predictions.

objects are better recognized from novel viewpoints than the main predictionso

asymmetric objects (Poggio and Vetter, 1992); when

moved to novel locations in the visual field, obje. t s with * The existence of broadly tuned neurons at all levels
translation-invariant features are better recognized than of the visual pathway, tuned to single features or to
those without (Bricolo and Biilthoff, 1992; Nazir and configurations in a multidimensional feature space.
O'Regan, 1990). A typical agnosic patient can distin- * At least two types of plasticity in the adult brain,
guish between a face and a car, a classification task at corresponding to two stages of learning in per-
the basic level of recognition, but cannot recognize the ceptual skills and tasks. One stage probably in-
face of Marilyn Monroe, an identification task at the sub- volves changes in the tuning of individual neuron
ordinate level (Damasio and Tranel, 1990). A recently- responses; this resembles adaptation. The other
reported stroke patient cannot identify the orientation of probably requires changes in cortical circuitry spe-
a line but can align her hand with it if she imagines post- cific to the task being learned, connecting many
ing a letter through it, suggesting strongly that there are neurons across possibly many areas.
also multiple outputs from visual recognition (Goodale,
1991). 2 Object Recognition: Multiple Tasks,

Yet although recognition strategies diverge, recent Multiple Pathways
theories of object recognition converge on one mecha-
nism that might underlie several of the distinct stages, Recognizing an object should be difficult because it
as we will argue in this paper. This mechanism is a rarely looks the same on each sighting. Consider the
simple one, closely related to template matching and prototypical problem of recognizing a specific face. (We
Nearest Neighbor techniques. It belongs to a class of ex- believe that processing of faces is not qualitatively dif-
planations that we call Memory-Based Models (MBMs), ferent from processing other 3D objects, although the
which includes memory-based recognition, sparse popu- former might be streamlined by practice, and biologi-
lation coding, Generalized Radial Basis Functions net- cal evidence supports this view [Gross, 1992].) The 2D
works, and their extension, Hyper Basis Functions net- retinal image formed by the face changes with the ob-
works (HBF) (Poggio and Girosi, 1990b) (see Figure 2.) server's viewpoint, and with the many transformations
In MBMs, classification or identification of a visual stin- that the face can undergo: changes in its location, pose,
ulus is accomplished by a network of units. Each unit and illumination, as well as non-rigid deformations such
is broadly tuned to a particular template, so that it is as the transition from a smile to a frown. A successful
maximally excited when the stimulus exactly matches its recognition system must be robust under all such trans-
template but also responds proportionately less to simi- formations.
lar stimuli. The weighted sum of activities of all the units Here we outline an architecture for a recognition sys-
uniquely labels a novel stimulus. Several recent and suc- tem that contains what we believe are the rudimentary
cessful face recognition schemes for machine vision share elements of a robust system. It is best considered as a
aspects of this framework ( Baron, 1981; Bichsel, 1991; protocol for and summary of existing programs in ma-
Brunelli and Poggio, 1992; Turk and Pentland, 1991; chine vision, but it also represents an attempt to delin-
Stringa, 1992a; Stringa, 1992b) eate the stages probably involved in visual recognition by

We will consider how the basic features of this class humans. The scheme (diagrammed in Figure 1) has dual
of models might be implemented by the human visual routes to recognition. The first is a streamlined route to
system. Our aim is to demonstrate that such models recognition in which the features extracted in the early
conform to existing physiological data and to make fur- stages of image analysis are matched directly to samples
ther physiological predictions. We will use as a specific in the database. The second potential route to recogni-
example of the class the RBF network. RBF networks tion diverges from the first to allow for the possibility
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that both the database models and the extracted image a face in an image cluttered with other objects (sgm~n-
features might need further processing before a match tation and classification), or to identify individual fac,.s
can be found. presented in an expected format (database indexing and

Our task in recognizing a face - or any other 3D object identification). Some artificial recognition systems have
- consists of multiple tasks, which fall into three broad been constructed to achieve invariant recognition un-
categories that characterize both routes: der isolated transformations (visualization). Examples

":Marking the boundaries of the face are systems that: recognize frontal views of faces un-
in thegimage.n Tider varying illuminations ( Brunelli and Poggio, 1992):
meting the image.nthis stage tpicy rinvoles eg- o recognize simple paper-clip-like objects independently of
menting the entire image into regions likely to
correspond to different materials or surfaces (and viewpoint ( Poggio and Edelman, 1990); or identify sire-

thereby subsumes rigure-ground segmentation) and pie objects solely by color under spatially varying illu-

is a prerequisite for further analysis of a marked re- mination ( Swain and Ballard, 1990).

gion. Image measurements are used to convert the Yet in biological systems, and in some artificial sys-
retinal array of light intensities into a primal im- terns, the stages may act in parallel or even merge. For
age representation, by computing sparse measure- example, there may be many short-cuts to recognizing a
ments on the array, such as intensity gradients, or frequently encountered object such as a face, for exam-
center-surround outputs. The result is a set of vec- pIe.
tor measurements at each of a sparse or dense set of Finding the face might be streamlined by a quick
locations in the image. These measurements may search at low resolution over the whole image for face-
be global ones like average value over a whole array like patterns. The search might employ simplified tern-
of (filtered) pixel values, plates of a face containing anthropometric information

"* Classification, or basic-level recognition: Distin- (for example, a two-eyes-and-mouth mask). Once lo-

guishing objects that are faces from those that are cated, salient features such as eyes can be used to demar-

not. Parameter values estimated in the preceding cate the entire object to which they belong, eliminating

stage - e.g. the distance between eyes and mouth the need to segment other parts of the image. These

- are used in this stage for classification of a set of detectors would scan the image for the presence of these

features - e.g. as a potential face, animal, or man- face-specific features, and using them, locate the face for

made tool. This stage requires that the boundaries further processing (translation, scaling, etc.). (Some ma-

or the location of at least potential faces be demar- chine vision systems already implement this idea, using

cated, and hence generally depends on the preced- translation-invariant face-feature-detectors such as eye

ing step of image segmentation, although it may detectors [Bichsel, 1991] or symmetry detectors.) Thus

work without it at an added computational cost. segmentation may occur simultaneously with classifica-
tion. The existence of these face-detectors in the human

"* Identification, or subordinate-level recognition: visual system might explain why we so readily perceive
Matching the face to a stored memory, and thereby faces in the simplest drawings of dots and lines, or in
labeling it. This stage requires some form of index- symmetric patterns formed in nature (Hurlbert and Pog-
ing of the database samples. Because it is compu- gio, 1986), and why we detect properly configured faces
tationally implausible that the recognition system more readily than arbitrary or inverted arrangements of
contains a stored sample of the face in each of its facial features (Purcell and Stewart, 1988). Indeed, we
possible views or expressions, or under all possi- wonder whether face recognition may have become so in-
ble illumination conditions at all possible viewing veterate that the human brain might first classify image
distances, this step in general also requires that regions into face or non-face. Notice that the process of
the face be transformed into a standard form for finding features such as the eyes and identifying the face
matching against its stored template. Thus in par- are probably very similar in this view. They are both
allel with the direct route from classification to based on a set of prototypical examples of either eyes or
identification there may exist a second route that views of the particular face, and they may be using a
we call the visualization route, which may include similar machinery perhaps (RBF-like).
an iterative sequence of transformations of both the Recognizing an expected object might also be more
image-plane and the database models until it con- speedy and efficient than identifying an unexpected one.
verges on a match. In the classification stage, only those features specific

These stages, and some open questions on the overall for the expected object class need be measured, and cor-
architecture, are further discussed in the Appendices. rect classification would not require that all features be

As outlined here, the stages are distinct and could be simultaneously available. This step might therefore be
implemented in series within each route to recognition. itself a form of template matching, where part-templates
Most artificial face recognition systems tackle the stages may serve as well as whole-templates to locate and clas-
separately, being designed either to detect and localize 2 sify the object. In many cases the classification stage



may lead by itself to unique recognition, especially when it computes the function h(lix - tll) 2 . The N centers
situational information, such as the expectedness of the t, corresponding to the N data points, thus behave like
object, restricts the relevant data base. templates, to which the inputs are compared for similar-

Yet many questions are left hanging by this sketch of ity.
a recognition system. In biological systems, is matching A typical and illustrative choice of RBF is the Gaus-
done between primal image representations, like center- sian [h(llx-tll) = ezp(-(Ilx-t1j)2 /2u 2)I. In the limiting
surround outputs at sparse locations, or between sets case where h is a very narrow Gaussian, the network ef-
of higher level features? Computational experiments on fectively becomes a look-up table, in which a unit gives
face recognition suggest that the former strategy per- a non-zero signal only if the input exactly matches its
forms much better. What exactly are the key features center t.
used for identifying, localizing and normalizing an ob- The simplest recognition scheme based on RBF net-
ject of a specific class? Is there an automatic way to works that we consider is that suggested by Poggio and
learn them? (Huber, 1985). Do biological visual sys- Edelman (1990) (see fig. 7) to solve the specific prob-
tems acquire recognition features through experience ( lem of recognizing a particular 3D object from novel
Edelman, 1991)? Do humans use expectation to restrict views, a subordinate-level task. In the RBF version of
the data base for categorization? Some psychophysical the network, each center stores a sample view of the ob-
experiments suggest that we do not need higher-level ject, and acts as a unit with a Gaussian-like recognition
expectations to recognize objects quickly in a random field around that view. The unit performs an operation
series of images, but these experiments have used famil- that could be described as "blurred" template matching.
iar objects such as the Eiffel Tower (M. Potter, pers. At the output of the network the activities of the vari-
comm.). ous units are combined with appropriate weights, found

2.1 A Sketch of a Memory-Based Cortical during the learning stage. An example of a recognition

Architecture for Recognition field measured psychophysically for an asymmetric ob-
ject after training with a single view is shown in fig 5.

We suggest that most stages in face recognition, and As predicted from the model (see Poggio and Edelman,
more generally, in object recognition, may be imple- 1990), the shape of the surface of the recognition errors
mented by modules with the same intrinsic structure - is roughly Gaussian and centered on the training view.
a Memory Based Module (MBM). At the heart of this In this particular model, the inputs to the network
structure is a set of neurons each tuned to a particular are spatial coordinates or measurements of features (e.g.
value or configuration along one or many feature dimen-sion. Lt ustak as n eampe ofsuc a srucure angles or lengths of segments) computed from the im-
sions. Let us take as an example of such a structure age. In general, though, the inputs to an RBF net-
the Hyper Basis Functions (HBF) network. This is a work are not restricted to spatial coordinates but could
convenient choice because HBFs have been successfully include, for example, colours or configurations of seg-
applied already to several problems in object recognition ments, binocular disparities of features, or texture de-
as well as an unrestrictive, easily modifiable choice be- scriptions. Certainly in any biological implementation of
cause HBFs are closely related to other approximation such a network the inputs may include measurements or
and learning techniques such as multilayer perceptrons. descriptions of any attribute that the visual system may

2.1.1 RBF Networks represent. We assume that in the primate visual sys-

HBF netWorks are approximation schemes based on, tem such a recognition module may use a large number

but more flexible than, Radial Basis Functions (RBF) of primitive measurements as inputs, taken by different

networks (see Figure 2; Poggio and Girosi, 1990b; Pog- "filters" that can be regarded as many different "tem-

gio, 1990). The fundamental equation underlying RBF plates" for shape, texture, color and so forth. The only

networks states that any function f(x) may be approxi- restriction is that the features must be directly computed

mated by a weighted sum of RBFs: from the image. Hence the inputs are viewer-centered,
not object-centered, although some, like colour, will be

NV viewpoint-independent. The output of the network is,
f(x) - • c h(( x - ti1) 2 + p(x). (1) though, object-centered, provided there is a sufficient

number of centers. This generality of the network per-
The functions h may be any of the class of RBFs, mits a mix of 2D and 3D information in the inputs, and

for example, Gaussians. p(x) is a polynomial that is re- relieves the model from the constraints of either.
quired by certain RBFs for the validity of the equation. This feature of the model also renders irrelevant the
(For some RBFs, e.g. Gaussians, the addition of p(x) question on whether object representations are 2D or
is not necessary, but improves performance of the net- 3D. The Foggio-Edelman model makes it clear that 2D-
work.) In an RBF network, each "unit" computes the based schemes can provide view invariance as readily
distance Ilx - tll of the input vector x from its center as a 3D model can, and compute 3D pose as well (see
t and applies the function h to the distance value, i.e. 3 Poggio and Edelman, 1990). So the relevant questions



are: what is explicit in neurons? and what does it mean as objects.
for information about shape to be explicit in neurons?
In a sense, some 2D-based schemes such as the Poggio- The distinctions between these types of recvgnitsual
Edelman model may be considered as plausible neuro-
physiological implementations of 3D models. tem overlearns certain objects or transformations. For

physiolnogica i menttati ofe 3Dco dels architecexample, a shape-from-shading network might develop
We do not suggest that the cortical architecture for for a frequently-encountered type of material, or for a

recognition consists of a collection of such modules, one specific class of object. Indeed, our working assump-

for each recognizable object. Certainly it is more com- tioniiscthatsanyfapparent differences between recogn-

plex than that cartoon, and not only because viewpoint- tion strategies for different types of objects arise not

invariance is not the only problem that the recognition from fundamental differences in cortical mechanisms but

system must solve. For example, the cortex must also from imbalances in the distribution of the same basic

learn to recognize objects under varying illumination modules across different objects and different environ-
(photometric invariance) and to recognize objects at the ments avanna Manflie ob ably ad ta ecific

basic as well as subordinate level. [Preliminary results modls dedica to faces, baltohaw ta have

on real objects (faces) suggest that HBF modules can es- shape-from-shading modules specific to familiar pieces

timate expression and direction of illumination equally of office furniture, he might not be able to recognize a

as well as pose (Brunelli, pers. comm., Beymer, pes. filing cabinet at all, much less under varying illumina-

comm.).] Yet each of these and other distinct tasks in tion This suggests a decomposition into modules that
recognition may be implemented by a module broadly inThsugetadcopiinitom ulsht
similarec otheognitionmayb eilementedby amodule broady are both task and object specific, which is a rather un-
similar to the Poggio-Edelrnan viewpoint-invariance net- cnetoa u luil da

work. We might expect that the system could be de- conventional but plausible idea.work Wemigt epecttha th sytem oul bede- Transformations specific to a particular object may

composed into elementary modules similar in design but alsosbergeera nszedefomitraosforationslleanedeon pro

different in purpose, some specific for individual objects also be generalized som transformations learned on pro-

(and therefore solving a subordinate-level task), some totypes of the same clas. For example, the deformation

specific to an object class (solving a basic-level task), caused by a change in pose or, for a face, a change in

and others designed to perform transformations or fea- expression or age, may be learned from a set of exam-
pies of the same transformation acting on prototypes

ture extractions, for example, common to several classes, of the class. Some transformations may be generalized
The modules may broadly be categorized as: across all objects sharing the same symmetries (Poggio

"* Object-specific. A module designed to compensate and Vetter, 1992).
for specific transformations that a specific object The big question is, if the recognition system does
might undergo. As in the Poggio-Edelman net- consist of similar modules performing interlocking tasks,
work, the module would consist of a few units, each how are the modules linked, and in what hierarchy (if
maximally tuned to a particular configuration of it makes sense at all to talk of ordered stages)? In
the object - for the face, say, a particular combina- constructing a practical system for face recognition, it
tion of pose and expression. A more general form would make sense first to estimate the pose, expression,
of the network may be able to recognize a few dif- and illumination for a generic face and then to use this
ferent faces: its hidden units would be tuned to estimate to "normalize" the face and compare it to sin-
different views but of not just one face, and there- gle views in the data base (additional "search" to fine
fore behave more like eigenfaces. tune the match may be necessary). Thus the systemI would first employ a class-specific module based on in-

"* Class-specific. A module that generalizes across ob- variant properties of faces to recover, say, a generic view
jects of a given class. For example, the network - analogous to an object-centered representation - that
may be designed to extract a feature or aspect of could feed into face-specific networks for identification.
any of a class of objects, such as pose, color, or The information that the system extracts in the early
distance. For example, there might be a network stages concerning illumination, expression, context, etc.
designed to extract the pose of a face, and a sep- would not be discarded. Within each stage, modules
arate network designed to extract the direction of may be further decomposed and arranged in hierarchies:
illumination on it. Any face fed as input to network may be specific for eyes, and may extract gaze angie,
would elicit an estimate of its pose or illumination. a parameter that may then feed into a module concerned

" Task-specific. Networks that solve tasks, such as with the pose of the entire face.
shape-from-shading, across classes of objects. An For face recognition, the generic view may be recov-
example would be a generic shape-from-shading ered by exploiting prior information such as the approx-
network that takes as input brightness gradients imate bilateral symmetry of faces. In general a single
of image regions. It may act in the early stages monocular view of a 3D object (if shading is neglected)
of recognition, helping to segment and classify 3D does not contain sufficient 3D information for recogni-
shapes even before they are grouped and classified tion of novel views. Yet humans are certainly able to

• " • . m m a I l4



recognize faces rotated 20-30 degrees away from frontal et. al. ( Hasselmo et.al., 1989) which would in turn
after training on just one frontal view. One of us has re- correspond almost exactly to the object-centred output
cently discussed ( Poggio, 1991) different waysfor solving of the Poggio-Edelman model. Perrett et. al. (19?(9:
the following problem: from one 2D view of a 3D object 1985) also report cells that respond to a given poset of
generate other views, exploiting knowledge of views of the face regardless of illumination - even when the face
other, "prototypical" objects of the same class. It can is under heavy shadow. Such cells may resemble units in
be shown theoretically ( Poggio and Vetter, 1992) that a task-specific network. In the superior temporal sulcus,
prior information on generic shape constraints does re- Hasselmo et. al. (1989) also find cells sensitive to head
duce the amount of information needed to recognize a 3D movement or facial gesture, independent of the view or
object, since additional virtual views can be generated identity of the face. Such cells would also appear to
from given model views by the appropriate symmetry be both class- and task-specific. (See Perrett and Oram,
transformations. In particular, for bilaterally symmetric 1992) for a more detailed review of relevant physiological
objects, a single non-accidental "model" view is theo- data.)
retically sufficient for recognition of novel views. Psy- Fujita and Tanaka (1992) have also reported cells in
chophysical experiments ( Vetter, Poggio and Biilthoff, IT that respond optimally to certain configurations of
1992) confirm that humans are better in recognizing color and shape. These may well represent elements of
symmetric than non-symmetric objects. networks that generalize across objects, classifying them

An interesting question is whether there are indeed according to their geometric and material constitution.
multiple routes to recognition. It is obvious that some More significantly, Fujita and Tanaka (1992) report that
of the logically distinct steps in recognition of Figure 1 cells in the anterior region of IT (cytoarchitectonic area
may be integrated in fewer modules, depending on the TE) are arranged in columns, within which cells respond
specific implementation. Figure 3 shows how the same to similar configurations of color, shape and texture.
architecture may appear if the classification and the visu- Each configuration may be thought of as a template,
alization routes are implemented with HBF networks. In which in turn might encode an entire object (e.g. a face)
this case, the database of face models would essentially or a part of an object (e.g. the lips). Within one col-
be embedded in the networks (see Poggio and Edelman, umn, cells may respond to slightly different versions of
1990). the template, obtained by rotations in the image-plane,

There are of course several obvious alternatives to this for example. Fujita and Tanaka (1992) conclude that

architecture and many possible refinements and exten- each of the 2000 or so columns in TE may represent one

sions. Even if oversimplified, this token architecture is phoneme in the language of objects, and that combi-

useful to generate meaningful questions. The preceding nations of activity across the columns are sufficient to
discussion may in fact be sufficient for performing com- encode all recognizable objects.

putational experiments and for developing practical sys- The existence of such columns supports the notion

tems. It is also sufficient for suggesting psychophysical that the visual system may achieve invariance to image-

experiments. It is of course not enough from the point of plane transformations of elementary features by repli-
view of a physiologist, yet the physiological data in the cating the necessary feature measurements at different
next section provides broad support for its ingredients. positions, at different scales and with different rotations.

In the next section we describe how key aspects of
2.1.2 Physiological Support for a the architecture could be implemented in terms of plau-

Memory-Based Recognition Architecture sible biophysical mechanisms and neurophysiological cir-
cuitries.

At least superficially, physiological data seems to sup-

port the existence of elements of each these modules. 3 Neural modeling of memory-based
Perrett et.al. (Perrett et. al., 1989; Perrett et.al., 1985) architectures for recognition
report evidence from inferotemporal cortex (IT) not only
for cells tuned to individual faces but also for face cells In this section we discuss in more detail the possible neu-
tuned to intermediate views between frontal and profile, ral implementations of a recognition system built from
units that one would expect in a class-specific network MBMs. The main questions we address are: how are
designed to extract pose of faces. Such cells also sup- MBMs constructed when a new object or class of objects
port the existence of the view-centered units predicted is learned? and how might MBM units be constructed
by the basic Poggio-Edelman recognition module. Young from known biophysical mechanisms? We propose that
and Yamane ( 1992) describe cells in anterior IT that there are two stages of learning - supervised and unsu-
respond optimally to particular configurations of facial pervised - and illustrate to which elements of a memory-
features, or "physical prototypes." These may conceiv- based network they correspond. Where could they be
ably provide input to the cells described by Perrett et. localized in terms of cortical structures? What mech-
al. as "person recognition units", or to the approxi- anisms could be responsible? We discuss the memory-
mately view-independent cells described by Hasselmo, 5 based module itself and the circuitry that might underlie

S•. i i i i i i i i |5



it. 3. provide invariance (or near invariance under per-
spective projection) for scale, rotation and orther

3.1 The learning-from-examples module uniform deformations in the image plane. without

The simple RBF version of an MBM, discussed in sec- requiring that the features be invariant:
tion 2.1, learns to recognize an object in a straightfor- 4. discover symmetry, collinearity and other "'linear-
ward way. Its centers are fixed, chosen as a subset of class" properties (see Poggio and Vetter, 1992).
the training examples. The only parameters that can
be modified as the network learns to associate each view 3.1.1 Gaussian Radial Basis Functions
with the correct response ("yes" or "no" to the target In the special case where the network basis functions
object) are the coefficients ci, the weights on the con- are Gaussian and the matrix W diagonal, its elements
nections from each center to the output. wi have an appealingly obvious interpretation. A mul-

The full HBF network permits learning mechanisms tidimensional Gaussian basis function is the product of
that are more biologically plausible by allowing more one-dimensional Gaussians and the scale of each is given
parameters to be modified. HBF networks are equivalent by the inverse of wi. For example, a 2D Gaussian radial
to the following scheme for approximating a multivariate function centered on t can be written as:
function:

f'(x) - • coG(In(x - t.)112 ) + p(x) (2) G(Jix - t112v) e-llx-tui, = e - e -° (4)

0=1 where o,. = 1/w, and o,, = 1/w2 , and w, and w2 are the
where the centers t, and coefficients c0 are unknown, elements of the diagonal matrix W.
and are in general fewer in number than the data points Thus a multidimensional center can be factored in
(n < N). The norm is a weighted norm terms of one-dimensional centers. Each one-dimensional

center is individually tuned to its input: centers with

II(x -- ta)I11 = (X - ta)TWTW(x -- t) (3) small wi, or large oi, are less selective and will give ap-
preciable responses to a range of values of the input fea-

where W is an unknown square matrix and the super- ture; centers with large wi, or small a", are more selec-
script T indicates the transpose. In the simple case of tive for their input and accordingly have greater influ-
diagonal W the diagonal elements wi assign a specific ence on the response of the multidimensional center. The
weight to each input coordinate, determining in fact the template represented by the multidimensional center can
units of measure and the importance of each feature be considered as a conjunction of one-dimensional tem-
(the matrix W is especially important in cases in which plates. In this sense, a Gaussian HBF network performs
the input features are of a different type and their rela- the disjunction of conjunctions: the conjunctions repre-
tive importance is unknown) (Poggio and Girosi, 1990a). sented by the multidimensional centers are "or"ed in the
During learning, not only the coefficients c but also the weighted sum of center activities that forms the output
centers t,, and the elements of W are updated by in- of the network.
struction on the input-output examples. See Figure 4.

Whereas the RBF technique is similar to and similarly 3.2 Expected physiological properties of MBM
li-.ited as template matching, HBF networks perform units
a generalization of template matching in an appropri-
ately linearly transformed space, with the appropriate 3.2.1 The neurophysiological interpretation of

metric. HBF networks are therefore different in both HBF centers

interpretation and capabilities from "vanilla" RBF. An Our key claim is that HBF centers and tuned cortical
RBF network can recognize an object rotated to novel neurons behave alike.
orientations only if it has centers corresponding to sam- A Gaussian HBF unit is maximally excited when each
pie rotations of the object. HBFs, though, can perform component of the input exactly matches each component
a variety of more sophisticated recognition tasks. For of the center. Thus the unit is optimally tuned to the
example, HBFs can: stimulus value specified by its center. Units with multidi-

mensional centers are tuned to complex features, formed1. discover the Basri-Ullman result (Basri and Ull- ytecnntinosmprfeueasdciedn

man, 1989; Brunelli and Poggio, unpublished). (In by the conjunction of simpler features, as described in
its strong form (see Poggio 1991), this result states previous section.its stdron form(ehographic 1991),thisn rnyiest stes This description is very like the customary description
thsiblefeatunder orthor i probjecti many view orted of cortical cells optimally tuned to a more or less complex
visible features of the 3D object may be generated stimulus. So-called place coding is the simplest and most
by a linear combination of 2 other views.); universal example of tuning: cells with roughly Gaussian

2. with a non-diagonal W, recognize an object under receptive fields have peak sensitivities to given locations
orthographic projection with only one center; 6 in the input space; by overlapping, the cell sensitivities



cover all of that space. In VI the input space may be logical terms, it might not ultimately provide the best
up to 5 dimensional, depending on whether the cell is fit to all the physiological data once in. In espousing the
tuned not only to the retinal coordinates x, y but also general theory of MBMs for cortical mechanisms of oh-
to stimulus orientation, motion direction and binocular ject recognition, we do not confine ourselves to Gaussian
disparity. In V4 some cells respond optimally to a stim- RBFs as the only model of cortical neurons, but only at
ulus combining the appropriate values of speed and color present the most plausible.
(N. K. Logothetis, pers. comm.; Logothetis and Charles,
1990). Other V4 cells respond optimally to a combina- 3.2.2 Centers and a fundamental property of

tion of colour and shape (D. Van Essen, pers. comm.) . our sensory world

In MST cells exist optimally tuned to specific motions in We can recognize almost any object from any of many
different parts of the receptive field and therefore to dif- sman retofniteatmos, a l and nonia l. Weferent motion "dimensions". Most of these cells are also small subsets of its features, visual and non-visual. We

fernt otin "imnsins" Mot o tesecels ae aso can perform many motor actions in several different
selective for stimulus contrast. In "later" areas such asn p orm ma tions ins sevea l diIT cells may be tuned to more complex stimuli which ways. In most situations, our sensory and motor worlds
ITcells be h tued nd to n morer ofdimplensiox (Dstimui ware redundant. In the language of the previous sectioncan be changed in a number of "dimensions" (Desimone this means that instead of high-dimensional centers any
et.al., 1984). Gross (1992) concludes that " ...IT cells of several lower dimensinal centers ar often sufficient
tend to respond at different rates to a variety of differ-
ent stimuli." Thus it seems that multidimensional units a given tas tio mansbthatpthee"and"tof
with Gaussian-like tuning are not only biologically plau- " high-dimensional conjunction can be replaced by the
sible, but ubiquitous in cortical physiology. This claim is or" of its components - a face may be recognized by its
not meant to imply that for every feature dimension of a eyebrows alone, or a mug by its colour. To recognize an
multidimensionally tuned neuron, neurons feeding into object, we may use not only templates comprising all its
it can be found individually tuned to that dimension, features, but also subtemplates, comprising subsets ofFor xamleforsomemoton-eletivecels i MTthe features (and in fact exemplary sets of centers capable
For example, for some motion-selective cells in MT the of generating most eyes, say). This is similar in spirit
selectivities to spatial frequency and temporal frequency to the use of several small templates as well as a whole-
cannot be separated. Yet for these, it may be inappro- tc temuse in severa lll templates on fronta l a ce
priate to consider time and space as two independent recognition (Brunelli and Poggio, 1992).
dimensions and more appropriate to consider velocity as recognit(u l e and io 1992).
the single dimension in which the neuron is tuned. On Splitting the recognizable world into its additive partsthe other hand, it is well known that at lower levels in the may well be preferable to reconstructing it in its full mul-
visual system there do exist cells broadly tuned individ- tidimensionality, because a system composed of severalually to spatial frequency, orientation, and wavelength independently accessible parts is inherently more robustfor example, and from these dimensions many complex than a whole, simultaneously dependent on each of itsfeatures can be constructed. parts. The small loss in uniqueness of recognition is eas-ily offset by the gain against noise and occlusion. This

We also observe that not all MBMs have the same reduction of the recognizable world into its parts may
applicability in describing properties nf cortical neu- well be what allows us to "understand" the things that
rons. In particular, tuned neurons seem to behave more we see (see Appendix B).
like Gaussian HBF units than like the sigmoidal units
typically found in multilayer perceptrons (MLPs): the 3.2.3 How many cells?
tuned response function of cortical neurons resembles The idea of sparse population coding is consistent
ezp(-(IIx - tII)2 /2o' 2 more than it does a(xw), where with much physiological evidence, beginning even at the
a' is a sigmoidal "squashing" function and we define w retinal level where colors are coded by 3 types of pho-
as the vector of connection weights including the bias pa- toreceptors. Young and Yamane (1992) conclude from
rameter 0. (The typical sigmoidal response to contrast neurophysiological recordings of IT cells broadly tuned
that most neurons display may be treated as a Gaus- to physical prototypes of faces: "Rather than represent-
sian of large a'.) For example, when the stimulus to sng each cell as a vector in the space, the cell could be
an orientation-selective cortical neuron is changed from represented as a surface raised above the feature space.
its optimal value in any direction, the neuron's response The height of the surface above each point in the feature
typically decreases. The activity of a Gaussian HBF unit space would be given by the response magnitude of the
would also decline with any change in the stimulus away cell to the corresponding stimuli and population vectors
from its optimal value t. But for the sigmoid unit cer- would be derived by summing the response weighted sur-
tain changes away from the optimal stimulus will not faces for each cell for each stimulus." MBMs also sug-
decrease its activity, for example when the input x is gest that the importance of the object and the exposure
multiplied by a constant a > 1. to it may determine how many centers are devoted to

Lastly, we observe that although the Gaussian is the its recognition. Thus faces may have a more "punctate"
simplest and most readily interpretable RBF in physio- 7 representation than other objects simply because more



centers are used. Psychophysical experiments do suggest features are constructed from a hierarchy of -iinpkr -,-ik
that an increasing number of centers is created under ex- tuned to incrementally larger conjunctions of elenrent ar.
tended training to recognize a 3D object (Bilthoff and features. This idea - a standard explanation - can in-
Edelman, 1992). mediately be formalized in terms of Gaussian radial 6a-

While we would not dare to make a specific prediction sis functions, since a multidimensional Gaussian functionu
on the absolute number of cells used to code for a specific can be decomposed into the product of lower dimnensinal
object, computational experiments and our arguments Gaussians (Marr and Poggio, 1977; Ballard, 1986: Niel.
here suggest at least a minimum bound. Simulations by 1988; Poggio and Girosi, 1990b).
Poggio and Edelman (1990) suggest that in an MBM The scheme of figure 6 is a possible example of an
model a minimum of 10-100 units is needed to represent implementation of Gaussian Radial Basis functions in
all possible views of a 3D object. We think that the terms of physiologically plausible mechanisms. The first
primate visual system could not achieve the same rep- step applies to situations in which the inputs are place-
resentation with fewer than on the order of 1000. This coded, that is, in which the value of the input is rep-
number seems physiologically plausible, although we ex- resented by its location in a spatial array of cells - as,
pect that the actual number will depend strongly on the for example, the image coordinates z. y are encoded by
reliability of the neurons, training of the animal, rele- the spatial pattern of photoreceptor activites. In this
vance of the represented object and other properties of case Gaussian radial functions in one, two and possi-
the implementation. Thus we envisage that training a bly three dimensions can be implemented as receptive
monkey to one view of a target object may "create" at fields by weighted connections from the sensor arrays
least on the order of 100 cells tuned to that view I in the (or some retinotopic array of units whose activity en-
relevant cortical area, with a generalization field similar codes the location of features). If the inputs are interval-
to the one shown in figure 5. Training to an additional coded, that is, if the input value is represented by the
view may create or recruit cells tuned to that view. Over- continuously-varying firing rate of a single neuron, then a
training a monkey on a specific object should result in one-dimensional Gaussian-like tuned cell can be created
an over-representation in cortex of that object - more by passing the input value through multiple signmidal
cells than normally expected would be tuned to views of functions with different thresholds and taking their dif-
the object. Recent results from Kobatake, et. al. (1993) ference.
suggest that up to two orders of magnitude more cells Consider, for example, the problem of encoding
may be "created" in IT (or, rather, the stimulus selectiv- colour. At the retinal level, colour is recorded by the
ities of existing cells altered) on over-training to specific triplet of activities of three types of cell: the cone-
objects. opponent red-green (R-G) and blue-yellow (B-Y) cells

Note that we do not mean to imply that only 10 - and the luminance (L) cell. An RG cell signals increas-
1000 cortical cells would be active on presentation of ing amounts of red or decreasing amounts of green by
an object. Many more would be activated than those increasing its firing rate. Thus it does not behave like a
that are critical for its representation. We suggest only Gaussian tuned cell. But at higher levels in the visual
that the activity of approximately 100 cells should be

that to discriviminofap mateny to dlst ssystem, there exist cells that behave very much like units
sufficient to discriminate between two distinct objects. tuned to particular values in 3D colour space (Schein and
This conclusion is broadly supported by the conclusion Desimone, 1990). How are these multidimensional tuned
of Young and Yamane (1992) that the population re- colour cells constructed from one-dimensional rate-coded
sponse of approximately 40 cells in IT is approximately cells? We suggest that one-dimensional Gaussian tuned
sufficient to encode a particular face, and by the related cells may be created by the above mechanism, selective
observation of Britten, et.al. (1992) that the activity to restricted ranges of the three colour axes.
of a small pool of weakly correlated neurons in MT is Gaussians in higher dimensions can then be synthe-
sufficient to predict a monkey's behavioral response in a sized as products of one and two dimensional recep-motion detection task.sieaspoutofoeadto ienoalre-

tive fields. An important feature of this scheme is that
3.2.4 HBF centers and biophysical mechanisms the multidimensional radial functions are synthesized di-

rectly by appropriately weighted connections from the
How might multidimensional Gaussian receptive fields sensor arrays, without any need of an explicit computa-

be synthesized from known receptive fields and biophys- tion of the norm and the exponential. From this per-
ical mechanisms? spective the computation is performed by Gaussian re-

The simplest answer is that cells tuned to complex ceptive fields and their combination (through some ap-
'Probably in different ways: different cells may be tuned proximation to multiplication), rather than by thresh-
tPobblyi different partsoftheviewaysd diffr coverl e tofer- old functions. The view is in the spirit of the key roleto different parts of the view and may converge to differ- that the concept of receptive field has always played in

ent "prototypes" representing that component; when we use
the term "prototype" we have in mind the "caricatures" of neurophsyiology. It predicts a sparse population coding
Brunelli and Poggio 8 in terms of low-dimensional feature-like cells and mul-



tidimensional Gaussian-like receptive fields, somewhat Mel (1992) has simulated a specific biophysical h. -
similar to template-like cells, a prediction that could be pothesis about the role of cortical pyramidal cells i ii-
tested experimentally on cortical cells. plementing a learning scheme that is very similar to a

The multiplication operation required b- , .e previous HBF network. Marr (1970) had proposed another sitili-
interpretation of Gaussian RBFs to pi'•rm the "con- lar model of how pyramidal cells in neocortex could learn
junction" of Gaussian receptive field'- i not too implau- to discriminate different patterns. Marr's model is. *in a
sible from a biophysical point of view. It could be per- sense, the look-up table limit of our HBF model.
formed by several biophysical mechanisms (see Koch and
Poggio, 1987; Poggio, 990). Here we mention several 3.3 Mechanisms for learning
possibilities: Reasoning from the HBF model, we expect two mecha-

1. inhibitioii ,f the silent type and related synaptic nisms for learning, probably with different localizations.
and dendritic circuitry (see Poggio and Torre, 1978; one that could occur unsupervised and thus is similar to
Torre and Poggio, 1978). adaptation, and one supervised and probably based on

Hebb-like mechanisms.
2. the AND-like mechanism of NMDA receptors The first stage of learning would occur at the site of
3. a logarithmic transformation, followed by summa- the centers. Let us remember that a center represents a

tion, followed by exponentiation. The logarith- neuron tuned to a particular visual stimulus, for exam-
mic and exponential characteristic could be imple- ple, a vertically oriented light bar. The coefficients c,
mented in appropriate ranges by the sigmoid-like represent the synaptic weights on the connections that
pre-to-postsynaptic voltage transduction of many the neuron makes to the output neuron that registers the
synapses. network's response. In the simple RBF scheme the only

4. approximation of the multiplication by summation parameters updated by learning are these coefficients.
and thresholding as suggested by Mel (1990). But in constructing the network, the centers must be set

If the first or second mechanism is used, the product to values equal to the input examples. Physiologically,
of figure 6 can be performed directly on the dendritic then, selecting the centers t. might correspond to choos-
tree of the neuron representing the corresponding radial ing or re-tuning a subset of neurons selectively respon-
function. In the case of Gaussian receptive fields used sive to the range of stimulus attributes encountered in
to synthesize Gaussian radial basis functions, the cen- the task. This stage would be very much like adaptaion,
ter vector is effectively stored in the position of the 2D an adjustment to the prevailing stimulus conditions. It
(or ID) receptive fields and in their connections to the could occur unsupervised, and would strictly depend only
product unit(s). This is plausible physiologically, on the stimuli, not on the task. Of course we would ex-

Linear terms (direct connections from the inputs to pect some centers to be pretuned by evolution, evn in
the output) can be realized directly as inputs to an out- IT cortex.
put neuron that summates linearly its synaptic inputs. The second stage, updating of the coefficients co,
An output nonlinearity such as a threshold or a sigmoid could occur only supervised, since it depends on the full
or a log transformation may be advantageous for many input and output example pairs, or, in other words, on
tasks and will not change the basic form of the model the task. It could be achieved by a simple Hebb-type
(see Poggio and Girosi, 1989). rule, since the gradient descent equations for the c are

Poggio and Girosi, 1989):
3.2.5 Circuits

N

There is at least one other way to implement HBFs = W E 1G(Ilxj - t.112) , (5)
networks in terms of known properties of neurons. It i=1
exploits the equivalence of HBFs with MLP networks with a - 1 .... , n and A, is the squared error between
for normalized inputs (Maruyama et. al., 1992). If the the correct output for example i and the actual output
inputs are normalized (as usual for unitary input repre- of the network. Thus equation 5 says that the change
sentations), an HBF network could be implemented as in the c. should be proportional to the product of the
a MLP network by using threshold units. There is the activity of the unit i and the output error of the net-
problem, though, in normalizing the inputs in a biolog- work. In other words, the "weights" of the c synapses
ically plausible way. MLP networks have a straightfor- will change depending on the product of pre- and post-
ward implementation in terms of linear excitation and in- synaptic activity ( Poggio and Girosi, 1989; Mel, 1988;
hibition and of the threshold mechanism of the spike for Mel, 1990).
the sigroidal nonlinearity. The latter could also be im- In the RBF case, the centers are fixed after they are
plemented in terms of the pre-postsynaptic relationship initially selected to conform to the input examples. In
between presynaptic voltage and postsynaptic voltage, the HBF case, the centers move to optimal locations
In either case this implementation requires one neuron during learning. This movement may be seen as task-
per sigmoidal unit in the network. specific or supervised fine-tuning of the centers' stimulus



selectivities. It is highly unlikely that the biological vi- Gaussian cas, the parameters to be changed are -xactlý
sual system chooses between distinct RBF-like and HBF- the a of the Gaussians, i.e.. the spread of the associ;vee
like implementations for given problems. It is possible, receptive fields. Notice also that the a for all center.
though, that tuning of cell selectivities can occur in at on one particular dimension is the same, suggesting that
least two different ways, corresponding to the supervised the learning of w, may involve the modification of th-
and unsupervised stages outlined here. We might also ex- scale factor in the input arrays rather than a change in
pect that these two types of learning of "centers" could the dendritic spread of the postsynaptic neurons. In all
occur on two different time scales: one fast, correspond- these schemes the real problem consists in how to pro-
ing to selecting centers from a pre-existing set, and one vide the "teacher" input.
slow, corresponding to synthesizing new centers or re-
fining their stimulus specificities. The cortical locations 4 Predictions and Remarks
of these two mechanisms, one unsupervised, the other To summarize, we highlight the main predictions made
supervised, may be different and have interesting impli- by our interpretation of Memory-Based Models of the
cations on how to interpret data on transfer of learning brain.
(see Poggio, Fahle and Edelman, 1992).

For fast, unsupervised learning, there might be a large Predictions:
reservoir of centers already available, most of them with 1. Sparse population coding. The general issue of
an associated c = 0, as suggested by Mel (1990) in a how the nervous system represents objects and con-
slightly different context. The relevant ones would gain cepts is of course unresolved. "Sparse" or "punc-
a non-zero weight during the adaptive process. Alterna- tate" coding theories propose that individual cells
tively, the mechanism could be similar to some of the un- are highly specific and encode individual patterns.
supervised learning models described by Linsker (1990), "Population" theories propose that distributed ac-
Intrator and Cooper (1991), F61diak (1991) and others. tivity in a large number of cells underlies percep-

Slow, supervised learning may occur by the stabiliza- tion. Models of the HBF type suggest that a small
tion of electrically close synapses depending on the de- number of cells or groups of cells (the centers), each
gree to which they are co-activated (see, e.g. Mel, 1992). broadly tuned, may be sufficient to represent a 3D
In this scheme, the changes will be formation and stabi- object. Thus our interpretation of MBMs predicts a
lization of synapses and synapse clusters (each synapse "sparse population coding", partway between fully
representing a Gaussian field) on a cortical pyramidal distributed representations and grandmother neu-
cell simply due to correlations of presynaptic activities. rones. Specifically, we predict that the activity of
We suggest that this synthesis of new centers, as would approximately 100 cells is sufficient to distinguish
be needed in learning to recognize unfamiliar objects, any particular object, although many more cells
should be slower than selecting centers from an exist- may be active at the same time.
ing pool. But some recent data on perceptual learning 2. Viewer-centered and object-centered cells.
(e.g. Fiorentini and Berardi, 1981; Poggio, Fable and Our model (see the module of Figure 7) predicts
Edelman, 1992; Karni and Sagi, 1990) indicates other- the existence of viewer-centered cells (the centers)
wise: the fact that human observers rapidly learn en- and object-centered cells (the output of the net-
tirely novel visual patterns suggests that new centers work). Evidence pointing in this direction in the
might be synthesized rapidly. case of face cells in IT is already available. We

It seems reasonable to conjecture, though, that up- predict a similar situation for other 3D objects.
dating of the elements of the W matrix may take place It should be noted that the module of Figure 7 is
on a much slower time scale. only a small part of an overall architecture. We

Do the update schemes have a physiologically plau- predict the existence of other types of cells, such
sible implementation? Methods like the random-step as pose-tuned, expression-tuned and illumination-
method ( Caprile and Girosi, 1990), that do not require tuned cells. Very recently N. Logothetis (pers.
calculation of derivatives, are biologically the most plau- comm.) has succeeded in training monkeys to
sible. (In a typical random-step method, network weight recognize the same objects used in human psy-
changes are generated randomly under the guidance of chophysics, and has reproduced the key results of
simple rules; for example, the rule might be to double the Buithoff and Edelman (1992). He also succeeded in
size of the random change if the network performace im- measuring generalization fields of the type shown in
proves and to halve the size if it does not.) In the Gaus- figure 5 after training on a single view. We believe
sian case, with basis functions synthesized through the that such a psychophysically measured generaliza-
product of Gaussian receptive fields, moving the centers tion field corresponds to a group of cells tuned in
means establishing or erasing connections to the prod- a Gaussian-like manner to that view. We expect
uct unit. A similar argument can be made also about the that in trained monkeys, cells exist corresponding
learning of the matrix W. Notice that in the diagonal 10 to the hidden units of a HBF network, specific for



the training view, as well as possibly other cells re- these modules can be considered as a powerful extension
sponding to subparts of the view. We conjecture of look-up tables. MLP networks cannot be interpreted
(although this is not a critical prediction of the the- directly as modified look-up tables (they are more similar
ory) that the step of creating the tuned cells, i.e. to an extension of multidimensional Fourier series), but
the centers, is unsupervised: in other words, that the case of normalized inputs shows that they are similar
to create the centers it would be sufficient to expose to using templates.
monkeys to target views without actually training The HBF theory predicts that population coding
them to respond in specific ways. (broadly tuned neurons combined linearly) is a conse-

3. Cells tuned to full views and cells tuned quence of extending a look-up table scheme - corre-

to parts. Our model implies that both high- sponding to interval coding - to yield interpolation (or

dimensional and low-dimensional centers should more precisely approximation), that is generalization. In

exist for recognizable objects, corresponding to full other words, sparse population coding and neurons tuned

templates and template parts. Physiologically this to specific optimal stimuli are direct and strong predic-

corresponds to cells that require the whole object tions of HBF schemes. It seems that the hidden units of

to respond (say a face) as well as cells that respond HBF models bear suggestive similarities with the usual

also when only a part of the object is present (say, descriptions of cortical neurons as being tuned to op-

the mouth). timal multidimensional stimuli. It is of course possible
that a hierarchy of different networks - for example MLP

4. Rapid Synaptic plasticity. We predict that the networks - may lead to tuned cells similar to the hidden
formation of new centers and the change in synap- units of HBF networks.
tic weights may happen over short time scales (pos-
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approximation modules. In the case of HBF networks 11



A An architecture for recognition: the templates would effectively correspond to diiffer,-r
classification and indexing route to centers, and matching would proceed in a more

recognition phisticated way than direct comparison. It is ctear
that this step may by itself accomplish segnienta-

Here we elaborate on the architecture for a recognition tion. These features may be local or global: the5
system introduced in Section 2. Figure 1 illustrates the may correspond to eye corners or to mean values of
main components of the architecture and its two inter- the M-array filtered through a large set of filters.
locking routes to recognition. The first route, which we
call the classification and indexing route, is essentially 3. Classification and indexing
equivalent to an earlier proposal ( Poggio and Edelman, Parameter values estimated by the preceding stage
1990) in which a HBF network receives inputs in the for the features of interest - e.g. the distance be-
form of ,-' fre parameters and classifies inputs as same tween eyes and mouth - are used in this stage for
or different from the target object. This is a streamlined classification and indexing in a database of known
route to recognition which requires that the features ex- examples. In many cases this may lead by itself
tracted in the early stages of image analysis be sufficient to unique recognition, especially when situational
to enable matching with samples in the database. Its information, such as the expectedness of a partic-
goal may be primarily basic level recognition, but it is ular object, restricts the relevant data base. Clas-
also the route that might suit best the search for and sification could be done via a number of classical
recognition of an expected object. In that case it may be schemes such as Nearest Neighbor or with modules
used to identify objects (at the subordinate level) whose that are more biologically plausible such as HBF
class membership is known in advance. It consists of 3 networks.
main stages: Some open questions remain:

1. Image measurements What are the features used by the human visual
The first step is to compute a primal image repre- system in the feature detection stage? The "non-
sentation, which is a set of sparse measurements on local" hypothesis is that there is a large set of filters
the image, based on appropriate smoothed deriva- tuned to different 2D shape features and efficiently
tives, corresponding to center-surround and direc- doing a kind of template matching on the input.
tional receptive fields. It can be argued that the Some functional of the correlation function is then
(vector) measurements to be considered should be evaluated (such as the max of the correlation or
multiple nonlinear functions of differential opera- some robust statistics on the correlation values, see
tors applied to the image at sparse locations (for Viola and Poggio, in preparation). The results may
a discussion of linear and non-linear measurement become some of the components (for that partic-
or "matching" primitives see Appendix in Nishi- ular filter, i.e. template) of the input vector to
hara and Poggio, 1984). (Similar procedures may object-specific networks consisting of hidden units
involve using Gaussians of different scales and ori- each tuned to a view and an output unit which is
entations [e.g. Marr and Poggio, 1977], Koen- view-invariant. Networks of this type may also ex-
derink's "jets," [Koenderink and VanDoorn, 1990], ist not only for specific objects but also for general
Gabor filters, or wavelets. A regularized gradient object components, perhaps similar to more precise
of the image also works well.) We call this array versions of some of Biederman's geons (Biederman,
of measurements an M-array; in general, it is a 1987). They would be synthesized by familiarity
vector-valued array (see figure 8). For recognition and their output may have a varying degree of view
of frontal images of faces an M-array as small as invariance depending on the type and number of
30 x 30 has been found sufficient to encode an im- the tuned cells in the hidden layer. Networks of
age of initial size 512 x 512 (Brunelli and Poggio, this type, tuned to a particular shape, could easily
1992). be combined conjunctively to represent more com-

2. Feature detection and measurements plex shapes (but still exploiting the fundamental
Key features, encoded by the primal measure- property of additivity). This general "non-local"
ments, are then found and localized. These fea- scheme avoids the correspondence problem since
tures may be specific for a specific object class - the components of the input vectors are statistics
for the expected class, if it is known in advance, taken over the whole image, rather than individual
or for an alternative class considered as a potential pixel values or feature locations. It may well be
match. This step can be regarded as performing that - in the absence of a serial mechanism such
a sort of template matching with several appro- as eye motions and attentional shifts - the visual
priate examples; when a face is the object of the system does not have a way to keep and use spatial
search, templates may include eye pairs of different relations between different components or feaures
size, pose, and expression. In the HBF case the 12 in an image and that it can only detect the likely

S• mmu~ nnnmun• mn mun nmm ulm al~W12



"presence" of, say, a few hundred features of vari- et. al., 1989). The main steps of this hypothetical second
ous complexity. route to recognition are:

The architecture has to be hierarchical, consist- I. Image measurement
ing of a hierarchy of HBF-like networks. For in- 2. Feature detection
stance, an eye-recognizing MBM network may pro- 3. Image rectification
vide some of the inputs to a face recognition net-
work that will combine the presence (and possibly The feature detection stage provides information
relative position) of eyes with other face features about the location of key features that is used in
(remember that a MBM network can be regarded this stage to normalize for image-plane translation,
as a disjunction of conjunctions). The inputs to the scaling and image-plane rotation of the input M-
eye-recognizing networks may be themselves pro- array.
vided by other RBF-like networks; this is similar 4. Pose estimation
to the use in the eye-recognizing networks of inputs 3-D pose (2 parameters), illumination, and other
that are the result of filtering the image through of parameters (such as facial expression) are es-
a few basic filters out of a large vocabulary consist- timated from the M-array. This computation
ing of hundreds of "elementary" templates, repre- could be performed by an MBM module that has
senting a vocabulary of shapes of the type described "learned" the appropriate estimation function from
by Fujita and Tanaka (1992). The description of examples of objects of the same class.
Perrett and Oram (1992) is consistent with this 5 Visuazation
scenario. At various stages in this hierarchy more
invariances may be achieved for position, rotation, The models (M-arrays in the data-base correspond-
scaling etc. in a similar way to how complex cells ing to known objects) are warped in the dimensions
are built from simple ones. of pose and expression and illumination, to bring

them into register with the estimate obtained from

B An architecture for recognition: the the input image. The transformation of the models

visualization route to recognition is performed by exploiting information specific to
the given object (several views per object may have

The second potential route to recognition takes a neces- been stored in memory) or by applying a generic
sary detour from the first route to fine-tune the matching transformation (e.g., for a face, from "serious" to
mechanisms. Like the classification pathway it begins "smiling") learned from objects of the same class.
with the two stages of image measurement and feature Several transformations may be attempted at this
detection, but diverges because it allows for the possi- stage before a good match is found in the next step.
bility that a match between the database and measured 6. Verification and indexing
image features might not directly be found. Further pro- The rectified "image" is compared with the warped
cessing may take place on the image or on the stored data base of standard representations. Open ques-
examples to bring the two into registration or to narrow tions remain on how the data base may be orga-
the range of the latter. The main purpose of this loop nized and what are the most efficient means of in-
is to correct for deformations before comparing image to dexing it.
data base.

Computational arguments (Breuel, 1992) suggest that
this route should separate transformations to be applied
to the image (to correct image-plane deformations such
as image-plane translations, scaling and rotations) from
those to be applied to the database model (which may
include rotations-in-depth, illumination changes, and al-
terations in facial expression, for example). The system
may try a number of transformations in parallel and on
multiple scales of spatial resolution (see van Essen and
Anderson, this volume) until it finds the one that suc-
ceeds. In general the whole process may be iterated sev-
eral times before it achieves a satisfactory level of con-
fidence. In the primate visual system, the likely site for
the latter transformations is cortical area IT, whereas the
former would probably take place earlier, as available re-
sults on properties of IT seems to suggest ( Gross, 1992;
Perrett et.al., 1982; Perrett and Harries, 1988; Perrett 13
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Figure 1: A sketch of an architecture for recognition with two hypothaetical routes to recognition. Single arrows rep-
resent the classification and indexing route described in Appendix A. Double arrows represent the main visualization
route, and dashed arrows alternative pathways within it.
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Figure 2: A RBF network for the approximation of two-dimensional functions (left) and its basic "hidden" unit
(right). x and y are components of the input vector which is compared via the RBF h at each center t. Outputs of
the RBFs are weighted by the ci and summed to yield the function F evaluated at the input vector. N is the total
number of centers.
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Figure 3: A sketch of possibly the most compact (but not the onlyt) implementation of the proposed recognition
architecture in terms of modules of the HBF type.
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Figure 4: A network of the Hyper Basis Functions type. For object recognition the inputs could be image measurements
such as values of different filters at each of a number of locations in the image. The network is a natural extension of
the template matching scheme and contains it as a special case. The dotted lines correspond to linear and constant
terms in the expansion. The output unit may contain a sigmoidal transformation of the sum of its inputs (see Poggio
and Girosi, 1990b).
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Figure 5: The generalization field associated with a single training view. Whereas it is easy to distinguish between,
say, tubular and amoeba-like 3D objects, irrespective of their orientation, the recognition error rate for specific objects
within each of those two categories increases sharply with misorientation relative to the familiar view. This figure
shows that the error rate for amoeba-like objects, previously seen from a single attitude, is viewpoint-dependent.
Means of error rates of six subjects and sit different objects are plotted vs. rotation in depth around two orthogonal
axes (Bilthoff, Edelman and Sklar, 1991; Edelman and Bilthoff, 1992). The extent of rotation was ±60 in each
direction; the center of the plot corresponds to the training attitude. Shades of gray encode recognition rates, at
increments of 5% (white is better than 90%; black is 50%). From Bilthoff and Edelman (1992a). Note that viewpoint
independence can be achieved by familiarizing the subject with a sufficient number of training views of the 3D object.
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Figure 6: A three-dimensional radial Gaussian implemented by multiplying a two-dimensional and a one-dimensional
Gaussian receptive field . The latter two functions are synthesized directly by appropriately weighted connect~ons
from the sensor arrays, as neural receptive fields are usually thought to arise. Notice that they transduce the implicit
position of stimuli in the sensor array into a number (the activity of the unit). They thus serve the dual purpose of
providing the required "number" representation from the activity of the sensor array and of computing a Gaussian
function. 2D Gaussians acting on a retinotopic map can be regarded as representing 2D 'features", while the radial
basis function represents the "template" resulting from the conjunction of those lower-dimensional features. From
Poggio and Girosi (1989a).
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Figure 7: (a) The HBF network proposed for the recognition of a 3D object from any of its perspective views (Poggio
and Edelman, 1990). The network attempts to map any view (as defined in the text) into a standard view, arbitrarily
chosen. The norm of the difference between the output vectorf and the standard view s is thresholded to yield a 0, 1
answer (instead of the standard view the output of the netwok can be directly a binary classification label). The 2N
inputs accommodate the input vector v representing an arbitrary view. Each of the n radial basis functions is initially
centered on one of a subset of the M views used to synthesize the system (n <_ M). During training each of the M
inputs in the training set is associated with the desired output, i.e., the standard view a. Fig. (b) shows a completely
equivalent interpretation of (a) for the special case of Gaussian radial basis functions. Gaussian functions can be
synthesized by multiplying the outputs of two-dimensional Gaussian receptive fields, that "look" at the retinotopic
map of the object point features. The solid circles in the image plane represent the ID Gaussians associated with the

first radial basis function, which represents the first view of the object. The dotted circles represent the 2D receptive
fields that synthesize the Gaussian radial function associated with another view. The 2D Gaussian receptive fields
tranaduce values of features, represented implicitly as activity in a retinotopic array, and their product "computes" the
radial function without the need of calculating norms and exponentials explicitly. From Poggio and Girosi (1990c).
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Figure 8: Dsfferent M-arrays corresponding to different types of measurements (from left to right: I, I/ < I >,

I VIIL, and 0,= I + 9vy I). The measurements to be used are obtained on a much coarser grid than the original image.
From Brunelli and Poggio (1992).

24


